DEGNO			_		_	_	
REG.NO:				1			
						100	
		100					

DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)

(For Candidates admitted from 2019-2020 onwards)

PG DEGREE EXAMINATIONS APRIL - 2021

M.SC - MATHEMATICS

			FU	ZZY MATH	EMATICS		
		Time: 3 Hrs				Ma	ax.Marks: 75
	TO	OCE THE CORRECT	T ANGENER	PART -	- A		
C		OSE THE CORRECT Let two fuzzy sets,A		dard intercect	tion (AOP)(v))*1 = 10)
		a) $min[A(x), B(y)]$	and D, mon stan				V X C A
			()]		$\exp[A(x),B(y)]$		
		c) $\sum_{z=x*y}^{sup} \min[A(x), B]$			$_{*y}^{nf}$ min[$A(x)$, B	}(y)]	
	2.	The standard fuzzy in					
							d) $\sum_{x \in X} A(x).B(x) $
	3.	If c is a continuous for	uzzy complemen	t, then c has a	eq	uilibrium .	
		a) 0		c) ∞		d) 2	
	4.	A fuzzy union/t-co n	orm and u is a b	inary operation	on on the unit i	nterval of bo	undary condition
		u(a,0)= for al	$1 \text{ a,b,d} \in [0,1]$				
		a) 0	b) ∞	c) a		d) 1	
	5.	If A is a fuzzy number	er, α_A is a closed	interval for e	very $\alpha \in (0,1]$	for $\alpha = 1$, 1_A	is a nonempty closed
		interval because A is					
		a) normal	b) continuous	c) bou	inded	d) 0	
	6.	The interval valued s	ubtraction [2,5]	-[1,3]=			
		a) [1,4]	b) [2,3]	c) [1,2	2]	d) [-1,4]	
	7.	A crisp binary relation	on $R(X,X)$ that is	reflexive, and	i symmetric, a	nd transitive	is called a
		a) Fuzzy relation	b) fuzzy morph		c) partial ord		d) tolerance relation.
	8.	A crisp binary relation	on $R(X,X)$ is a re	flexive and sy	mmetric fuzzy	relation, it is	s sometimes called a
		a) Fuzzy morphisms	b) proximity	relation	c) partial ord	ering	d) tolerance relation
	9.	The three relations co	onstrain each oth	er in such a w	vay that PoQ =	R, where • de	enotes
		compositions.					
		a) Minimum	b) maximum		c) min-max		d) max-min
	10	. The solution set S (Q	,r) is not empty,	it always con	tains a	solution, p, a	nd it may
		containSoluti					
		a) Unique maximum,	, several minimu	m	b) sev	eral maximu	m, Unique minimum
		c) Unique ,maximum				eral, maximu	

ANSWER ALL THE QUESTIONS

(5*7 = 35)

11. a) Let $f: X \to Y$ be an arbitrary crisp function. Then for any $A \in \Box$ (X), prove f fuzzified by the extension principle satisfies the equation $f(A) = \bigcup_{\alpha \in [0,1]} f(\alpha +_A)$.

(OR)

b) Let $f: X \to Y$ be an arbitrary crisp function. Then for any $A \in \Box(X)$ and for all $\alpha \in [0,1]$, prove the following Properties of f fuzzified by the extension principle holds.

(i)
$$(\alpha +_{\lceil f(A) \rceil}) = f(\alpha +_A);$$
 (ii) $(\alpha_{\lceil f(A) \rceil}) \sqsubseteq f(\alpha_A);$

12. a) Let i $_w$ denote the class of yager t-norms, then prove that I $_{min}$ $(a,b) \le i_w (a,b) \le min(a,b)$

(OR)

- b) Prove that the standard fuzzy intersection is the only idempotent t-norm.
- 13. a) Explain four arithmetic operations on intervals.

(OR)

- b) Explain arithmetic operations on fuzzy numbers.
- 14. a) (i) Define Partial ordering.

(ii) Write properties of partial ordering.

(OR)

- b) Explain fuzzy equivalence relations.
- 15. a) If S (P,R) $\neq \emptyset$, then prove that $\hat{P} = R \stackrel{\omega i}{\circ} Q^{-1}$ is the greatest member of S(P,R).

(OR)

b) Let i be a t-norm in the equation $Q = \begin{bmatrix} .1 & .6 \\ .8 & .9 \end{bmatrix}$ and $R = \begin{bmatrix} .2 & 1 \\ .25 & 1 \end{bmatrix}$ Determine if the above equation has a solution for i = max, product, and bounded difference, respectively.

PART - C

ANSWER ANY THREE QUESTIONS

(3*10 = 30)

- 16. Explain extension principle for fuzzy sets.
- 17. If f be a decreasing generator. Then a function g(a) = f(0) f(a) for any $a \in [0,1]$ is an increasing generator with g(1) = f(0), then prove that $g^{(-1)}(a) = f^{(-1)}(f(0)-a)$.
- 18. Let $A \in \Box$ (X), then prove that A is a fuzzy number if and only if there exists a closed interval [a,b] \neq \emptyset such that

$$A(x) = \begin{cases} 1, & \text{for } x \in [a, b] \\ l(x), & \text{for } x \in (-\infty, a) \text{ where } l \text{ is a function from } (-\infty, a) \text{ to } [0, 1] \text{ that is monotonic} \\ r(x), & \text{for } x \in (b, \infty) \end{cases}$$

increasing , continuous from the right , and such that l(x) = 0 for $x \in (-\infty, \omega_1)$; ris a function from (b, ∞) to [0,1] that is monotonic decreasing , continuous from the left , and such that r(x) = 0 for $x \in (\omega_2, \infty)$.

- 19. Explain binary relation on a single set.
- 20. Explain solution method of fuzzy relation equations.