SUB.CODE: 18UCS1A2/18UCA1A2							12
REG.NO:					4		

Time: 3 Hrs

DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)

Max.Marks: 75

(For Candidates admitted from 2020-2021 onwards)

UG DEGREE EXAMINATIONS APRIL - 2021

B.Sc., – COMPUTER SCIENCE & BCA- COMPUTER APPLICATIONS NUMERICAL ANALYSIS AND STATISTICS

		PART - A		
CI	HOOSE THE CORRECT	ANSWER		(10X1=10)
1.	What are the roots lies be	tween the equation x^3 -x-3=0		
	a) 0 and 1	b) 1 and 2	c) 2 and 3	d) 3 and 4
2.	In case of newton backwa	ard interpolation formula which	h equation is correct to find u?	?
	a) $(x-x_n)$ h=u	b) $x+x_n=uh$	c) $x-x_n=u$	d) x-x _n =uh
3.	The aim of elimination st	eps in gauss elimination metho	od is to reduce the co-efficient	matrix to
	a) Diagonal	b) identity	c) lower triangular	d) upper triangular
4.	The trapezoidal formula i	S		
	a) $h/2((y_0+y_n)+2A)$	b) $h/2((y_0-y_n)+2A)$	c) $h/2((y_0+y_n)-2A)$	$d)h/2((y_0-y_n)-2A)$
5.	The general algorithm of	Euler 's		
	a) $y_{n+1} = y_n + h f(x_n, y_n)$		b) $y_{n+1} = y_n + f(x_n, y_n)$	
	c) $y_{n+1} = y_n - h f(x_n, y_n)$		d) $y_{n+1} = y_n - f(x_n, y_n)$	
6.	Milne's corrector formula	is		
	a) y _n ,c	b) y _{n+1} ,c	c) y _{n-1} ,c	d) y _{n-2} ,c
7.	Sum of mode and median	of the data 12,15,11,13,18,11	,13,12,13	
	a) 26	b) 31	c) 36	d) 25
8.	Harmonic mean is the rec	iprocal of		
	a) Arithmetic mean	b) mode	c) harmonic mean	d) median
9.	The correlation coefficien	at is the of two regression co	oefficients	
	a) Geometric mean	b) arithmetic mean	c) harmonic mean	d) median
10	Regression coefficient is	independent of		
	a) units of measurement	b) scale and origin	c)both a and b	d) none of them

11. a) Find the real root of $x^3-3x+1=0$ lying between 1 and 2 upto three decimal places by Newton Raphson method.

(OR)

b) Construct Newton's forward interpolation polynomial for the following data

X	4	6	8	10
Y	1	3	8	16

12. a) Evaluate $\int_0^1 e^{-x^2} dx$ by dividing the range into four equal parts using Trapezoidal rule.

(OR)

b) Solve the following system of equations using gauss elimination method

i.
$$X+Y+Z=9$$

13. a) Using Euler's method solve y'=1+xy with y(0)=2. Find y(0.1),y(0.2),y(0.3).

(OR)

b) Given $y' = \frac{1}{x+y}$, y(0)=2. If y(0.2)=2.09, y(0.4)=2.17 and y(0.6)=2.24. Find y (0.8) using Milne's method.

14. a) Calculate the arithmetic mean for the following data

Class interval: 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45

5 10 5 4 3 Frequency: 6 15 2

(OR)

b) From the following data compute quartile deviation

Size:

0-10 10-20 20-30

30-40 40-50

Frequency: 41528167

15. a) Calculate the karlpearson's co-efficient of correlation from the data given below:

X: 2 6 8 10

Y: 12 14 16 18 20

(OR)

b) Find the regression line of y on x for the following data;

X: 18 31 25 26 28 19 35

Y: 11 16 19 17 14 11 24

ANSWER ANY THREE QUESTIONS

(3X10=30)

- 16. Find a real root of the equation $x^3-3x+1=0$ by using bisection method.
- 17. Solve the following system of equations using gauss seidal method

$$10x+2y+z=9;$$

 $X+10y-z=-22;$

$$-2x+3y+10z=22$$

- 18. Use Rungekutta method of the fourth order to find y(0.1), given that $y' = \frac{1}{x+y}$; Y(0)=1.
- 19. The number of telephone calls received in 245 successive one minute intervals at an exchange are shown in the following frequency distribution

7

12

No.of.calls: 0

) 1

2

3

4

5

5 6

Frequency: 14

21

25

43 51 40 39

Evaluate the mean, median, mode.

12

20. From the following data find the co efficient of correlation and obtain the two regression equations;

9

15

X: 1 2

8

Y: 9

3 4

5

11

6

13

7

14

8

16

10

