| CITIE | CODE  | 4 OTT COCK TO 1 |
|-------|-------|-----------------|
| SUB.  | CODE: | 18UCS6M2A       |

| REG.NO: |  |       |      |     |  |          |  |
|---------|--|-------|------|-----|--|----------|--|
|         |  | 10000 | 1000 | 100 |  | DEPTH BO |  |



# DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)



(For Candidates admitted from 2018-2019 onwards)

## UG DEGREE EXAMINATIONS APRIL – 2021

## B.SC – COMPUTER SCIENCE

## DIGITAL COMPUTER FUNDAMENTALS AND MICROPROCESSOR

Time: 3 Hrs Max.Marks: 75

| CHOC | SE THE CORRECT          |                         | RT - A                   | (10 V 1 – 10)        |
|------|-------------------------|-------------------------|--------------------------|----------------------|
|      |                         | ually operated on       | system                   | $(10 \times 1 = 10)$ |
|      |                         | b) decimal              |                          | d) havadaaimal       |
| 2    |                         |                         |                          | d) hexadecimal       |
| ۷.   |                         | ng is not an octal numb |                          |                      |
|      | a) 44                   | b) 29                   | c) 6632                  | d) 74                |
| 3.   | Are used for            | r converting one type   | of number system in to   | other form.          |
|      | a) Encoder              | b) logic gate           | c) half adder            | d) FA                |
| 4.   | Half adder consist of.  | &                       | Gates.                   |                      |
|      | a) EX-OR & AND          | b) EX-OR & OR           | c) EX-OR & NOT           | d) OR & NOT          |
| 5.   |                         |                         | n it's two inputs are    |                      |
|      |                         |                         | c) different             |                      |
| 6.   | The only function of a  |                         |                          |                      |
|      | a) stop a signal        |                         | b) recomplement a sig    | gnal                 |
|      | c) invert an input sign | al                      | d) act as a universal se | et                   |
| 7.   | K-map technique gene    | erally used up to       | Variables                |                      |
|      | a) 2                    | b) 8                    | c) 7                     | d) 6                 |
| 8.   | A Register is a group   | of                      |                          |                      |
|      | a) OR gates             | b) OR & AND gate        | c) Flip-flops            | d) AND gate          |
| 9.   | A microprocessor is     |                         |                          |                      |
|      | a) an analog device     |                         | b) an digital device     |                      |
|      | c) an mobile device     |                         | d) an calculator         |                      |
| 10.  | If a microprocessor is  | capable addressing 64   | k bytes of memory, its   | address-bus width is |
|      | a) 16-bits              | b) 20 bits              | c) 8bits                 | d) 32bits            |

#### ANSWER ALL THE QUESTIONS

 $(5 \times 7 = 35)$ 

11. a) Convert the hexadecimal number E3FA to binary.

(OR)

- b) Convert the  $(0.513)_{10}$  to octal.
- 12. a) State the limitations of Karnaugh map.

(OR)

- b) Explain the implementation of Don't Care conditions.
- 13. a) Summarize the various operations of RS flip-flop.

(OR)

- b) Why are asynchronous counters referred to as ripple counters?
- 14. a) Distinguish between the microcomputer and microprocessor.

(OR)

- b) How does assembly language get translated into machine language?
- 15. a) Elaborate the instruction and data formats in microprocessor.

(OR)

b) Describe the categories of the 8085 instruction set.

#### PART - C

### ANSWER ANY THREE QUESTIONS

 $(3 \times 10 = 30)$ 

- 16. Convert binary number 11011110 into its decimal equivalent.
- 17. State and prove the Demorgan's Theorem of Boolean algebra.
- 18. Discuss the half adder in block diagram form and also its logic implementation.
- 19. Explain the complete architecture of INTEL 8085 microprocessor.
- 20. Illustrate the addressing modes of 8085 with simple examples.