REG.NO:	SUB.CODE: 18UMM4C7								

DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)

(For Candidates admitted from 2019-2020 onwards)

UG DEGREE EXAMINATIONS APRIL - 2021

B.Sc., - MATHEMATICS

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM

Time: 3 Hrs Max.Marks: 75

PART - A

CHOOSE THE CORRECT ANSWER

(10X1=10)

- 1. The equation is of the form y = px + f(p) is known as......
 - a) clairauts equation

b) Eulers equation

c) charpits equation

- d) none of the above
- 2. The equation Mdx + Ndy is said to be exact if

a)
$$\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$$

b)
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

c)
$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$$

d) none of the above

3. The solution of $(D^2 - 5D + 4)y = 0$ is.....

a)
$$y = Ae^x + Be^{4x}$$

a)
$$y = Ae^x + Be^{4x}$$
 b) $y = Ae^{-x} + Be^{4x}$ c) $y = Ae^{-x} + Be^{-4x}$

d)
$$y = Ae^{2x} + Be^{4x}$$

4. The particular integral of the equation $(D^2 - 2D + 1) = e^x$ is

a)
$$-\frac{x^2}{2}e^x$$

b)
$$\frac{x^2}{2}e^x$$

c)
$$\frac{x}{3}e^x$$

- d) none of the above
- 5. A solution obtain by giving particular values to the arbitrary constants in known as......
 - a) particular integral
- b)complete integral
- c) general solution
- d) none of the above

6. The solution of $x + y \frac{\partial z}{\partial x} = 0$ is

a)
$$z = \frac{-x^2}{y} + \emptyset(y)$$
 b) $z = \frac{-x^2}{2y} + \emptyset(y)$

b)
$$z = \frac{-x^2}{2y} + \emptyset(y)$$

c)
$$z = \frac{x^2}{2y} + \emptyset(y)$$

c)
$$z = \frac{x^2}{2y} + \emptyset(y)$$
 d) $z = \frac{x^2}{y} + \emptyset(y)$

7. $L[\sqrt{t}] = \dots$

a)
$$\frac{\sqrt{\pi}}{2s^{3/2}}$$

b)
$$\frac{\sqrt{\pi}}{s^{3/2}}$$

c)
$$\frac{1}{2s^{3/2}}$$

$$\mathrm{d})\,\frac{-\sqrt{\pi}}{2s^{3/2}}$$

8. if L[f(t)] = F(s) then $L[f(at)] = \dots$

a)
$$F(S/a)$$

b)
$$-\frac{1}{a}F(S/a)$$

c)
$$\frac{1}{a}F(S/a)$$

d) none of the above

- 9. The inverse Laplace transform of $\left(\frac{s}{s^2+\nu^2}\right)$ is
 - a) cos kt

- b) cost
- c) sinkt
- d) none of the above

$$10. L^{-1}\left[\frac{1}{s(s+a)}\right] = \dots$$

a)
$$\frac{1}{a^2}(1-e^{-at})$$

b)
$$\frac{1}{a}(1 - e^{-at})$$

b)
$$\frac{1}{a}(1-e^{-at})$$
 c) $-\frac{1}{a}(1-e^{-at})$ d) $(1-e^{-at})$

d)
$$(1 - e^{-at})$$

PART - B

ANSWER ALL THE QUESTIONS

(5X7=35)

11. a) Solve
$$(x + 1)\frac{dy}{dx} + 1 = 2e^{-y}$$

(OR)

b) Solve
$$x^2p^2 + 3xyp + 2y^2 = 0$$

12. a) Solve
$$((D^2 + 2D + 5)y = xe^x$$

(OR)

b) Solve
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x$$

13. a) Solve
$$pxy + pq + qy = yz$$

(OR)

b) Solve
$$P + q = x + y$$

14. a) Find
$$L\left[\frac{\sin at}{t}\right]$$

(OR)

b) Evaluate
$$\int_0^\infty \frac{e^{-t} - e^{-2t}}{t} dt$$

15. a) Solve the equation
$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 5y = 5$$
 given that $y(0) = 0$, $y'(0) = 0$ by using Laplace transform.

(OR)

b) Find
$$L^{-1} \left[\frac{s}{(s^2 + a^2)^2} \right]$$

PART - C

ANSWER ANY THREE QUESTIONS

(3X10=30)

16. Solve
$$P^3 + 2xP^2 - y^2P^2 - 2xy^2P = 0$$

17. Solve
$$(D^2 + 16)y = 2e^{-3x} + \cos 4x$$

18. Solve
$$(y^2 + z^2) \frac{\partial z}{\partial x} + x \left(y \frac{\partial z}{\partial y} - z \right) = 0$$

19. Find the Laplace transform of the rectangular wave given by
$$f(t) = \begin{cases} 1 & (0 < t < b) \\ -1 & (b < t < 2b) \end{cases}$$

20. Solve the equations by using Laplace trasform
$$\frac{dx}{dt} + y = \sin t$$
, $\frac{dy}{dt} + x = \cos t$ $x(0) = 2$, $y(0) = 0$