SUB	.CO	DE:	181	JMI	VI4C	28
	I I E SI	Table 1	W 701	The same		

DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)

REG.NO:

(For Candidates admitted from 2019-2020 onwards)

UG DEGREE EXAMINATIONS APRIL - 2021

B.Sc., - MATHEMATICS

SEQUENCE AND SERIES

Time: 3 Hrs

Max.Marks: 75

PART - A

10. If $a_n = \frac{2^n n!}{n^n}$ then $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \cdots$

b) e

a) 2e

(10X1=10)

CHOOSE THE CORRECT ANSWER 1. The sequence 1,1,2,3,5,8,13, ... is called ----a) Cauchy's sequence b) Fibonacci sequence c) geometric sequence d) Harmonic sequence 2. The following statements are true except----a) $\left(\frac{1}{n}\right)$ is a convergent sequence b) $\left(\frac{1}{n}\right)$ is a bounded sequence c) $\left(\frac{1}{n}\right)$ monotonic increasing d) $\left(\frac{1}{n}\right)$ is a strictly monotonic decreasing 3. $\lim_{n\to\infty} \frac{n(n+1)}{n^2} = \dots$ c) -1 d) 00 4. If $(a_n) \to a$ and $a \ge 0$ for all n then----b) $a_n \neq 0$ $d)a_n \leq 0$ 5. If $(a_n) \to a$ and $(b_n) \to b$ then $\left(\frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n}\right) \to ab$ this result is known as: a) Cauchy's first limit theorem b) Cauchy's second limit theorem c) Ceasaro's theorem d) Cauchy's general principle of convergence 6. Which of the following one is wrong? a) $\left(\frac{1}{n}\right)$ is a Cauchy's sequence b) (n) is not a Cauchy's sequence c) $\left(\frac{(-1)^n}{n}\right)$ is a Cauchy's sequence d) $\left((-1)^n + \frac{1}{n}\right)$ is a Cauchy's sequence 7. Which of the following one is wrong? a) $1 - 1 + 1 - \cdots$ oscillates finitely b) $1 + 1 + 1 + \cdots$ diverges to ∞ d)1 + $\frac{1}{2}$ + $\left(\frac{1}{2}\right)^2$ + $\left(\frac{1}{2}\right)^3$ + \cdots converges to $\frac{1}{2}$ c) $1 + 2 + 2^2 + \cdots$ diverges to ∞ 8. The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if ----a) p < 1b) p > 1c)p = 1d) $p \leq 1$ 9. Let $\sum a_n$ be a series of positive terms. The correct statement from the following is--a) $\sum a_n$ converges if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} > 1$ b) $\sum a_n$ converges if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} < 1$ c) $\sum a_n$ converges if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$ d) $\sum a_n$ converges if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 0$

 $c)\frac{1}{c}$

d) $\frac{e}{2}$

ANSWER ALL THE QUESTIONS

(5X7=35)

11. (a)Prove that a sequence cannot converge to two different limits.

(OR)

- (b) Show that the sequence $(-1)^n$ is not convergent.
- 12. (a) If $(a_n) \to a$ and $(b_n) \to b$ then prove that $(a_n b_n) \to ab$.

(OR)

- (b) Show that $\lim_{n\to\infty} \frac{3n^2+2n+5}{6n^2+4n+7} = \frac{1}{2}$
- 13. (a) If a sequence (a_n) converge to l, then prove that every subsequence (a_{n_k}) of (a_n) also converge to l.

(OR)

(b) Show that (i)
$$\lim_{n\to\infty} \frac{1}{n} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = 0$$
 (ii) $\lim_{n\to\infty} \frac{n!}{n^n} = 0$

14. (a) Let $\sum a_n$ be a convergent series converging to the sum s, then prove that $\lim_{n\to\infty} a_n = 0$. Is converse true? Justify your answer.

(OR)

- (b)Discuss the convergence of $\sum \frac{1^2+2^2+...+n^2}{n^4+1}$
- 15. (a) Test the convergence of $\sum \frac{n^2+1}{5^n}$.

(OR)

(b) Prove that any absolutely convergent series is convergent.

PART - C

ANSWER ANY THREE QUESTIONS

(3X10=30)

- 16. Show that if (a_n) is a monotonic sequence then prove that $\left(\frac{a_1+a_2+\ldots+a_n}{n}\right)$ is also a monotonic sequence.
- 17. Show that the sequence $\left(1 + \frac{1}{n}\right)^n$ converges.
- 18. Prove that the sequence (a_n) in R is converges iff it is a Cauchy sequence.
- 19. State and prove Cauchy's General principle of converges of series.
- 20. Test the convergence of (i) $\sum \frac{n^3+a}{2^n+a}$