	SUB.CODE: 20PCS2E2A									
REG.NO:										

DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)

(For Candidates admitted from 2020-2021 onwards)

PG DEGREE EXAMINATIONS APRIL - 2021

M.Sc., - COMPUTER SCIENCE

ADVANCED SOFTWARE ENGINEERING

Time:	3 Hrs	Ma	x.Marks: 75

PART - A

CF	IOOSE THE CORRECT	ANSWER					(10X1=10)	
1.	Software that monitors/an	alyzes/controls real-w	orld even	ts as they o	ccur are calle	ed	software.	
	a) System b) Real	l Time c) Busi	iness	d) Er	nbedded			
2.	Software make	s use of non-numeric	al algori	thms to so	lve complex	problems	that are not	
	amenable to computation	or straightforward ana	lysis.					
	a) Engineering	b) Scientific	c) Web-l	pased	d) Artificia	al Intelliger	nce	
3.	decomposes a pr	roblem into its constitu	ent parts.					
	a) Partitioning	b) Modeling	c) Inform	nation Dom	ain d) Essent	ial View		
4.	An open-ended approach	, called proto	otyping, u	ses the pro	totype as the	first part o	f an analysis	
	activity that will be continued into design and construction.							
	a) Revolution	b) Evolutionary	c) Throv	vaway	d) '	Throwback		
5.	abstraction is a n	named collection of da	ta that de	scribes a da	ta object.			
	a) Data	b) Procedural	c) Contr	ol	d) Open			
6.	An example of a	abstraction is the syn	chronizat	ion semaph	ore.			
	a) Data	b) Procedural	c) Contr	ol	d) Open			
7.	creates a mo	del of data and/or info	rmation t	hat is repres	sented at a hig	gh level of	abstraction.	
	a) Data Control	b) Data Model	C) Data Desi	ign	d) Dat	a Structure	
8.	is a set of design	n steps that allows a D	FD with t	ransform fl	ow character	istics to be	mapped into	
	a specific architectural sty	yle.						
	a) Transform Mapping	b) Transaction Mappi	ing c) Pro	ocedural De	sign d)	Architectur	ral Design	
9.	links are used whe	n a number of differen	t relation	ships are es	tablished bety	ween graph	nodes.	
	a) Directed	b) Symmetric		c) Bidirect	ional d)	Parallel		
10) testing is a syst	tematic technique for o	constructi	ng the prog	ram structure	while at the	ne same time	
	conducting tests to uncover errors associated with inter- facing.							
	a) Unit	b) Integration	c) Val	idation	4)	System		

ANSWER ALL THE QUESTIONS

(5X7=35)

11. a) Explain about Software Applications.

(OR)

- b) Provide a Generic View of Software Engineering.
- 12. a) Survey on Software Requirement Specification.

(OR)

- b) Summarize on Analysis Principles.
- 13. a) Explain about Modularity.

(OR)

- b) Brief about Abstraction.
- 14. a) Write about Data Design.

(OR)

- b) Write about Real Time System.
- 15. a) Write about White Box Testing.

(OR)

b) Explain about Unit Testing.

PART-C

ANSWER ANY THREE QUESTIONS

(3X10=30)

- 16. Elaborate on Software Process Models.
- 17. Elucidate on Functional Modeling.
- 18. Describe in detail about Cohesion and Coupling.
- 19. Illustrate about Transform Mapping with an example.
- 20. Discuss in detail about Basis Path Testing.