	SUB.	COL	E: 2	OPM	M2A2
т	The second leading to the second				

REG.NO:

SUB.CODE: ZUFWIWIZAZ											

DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)

(For Candidates admitted from 2020-2021 onwards)

PG DEGREE EXAMINATIONS APRIL - 2021

M.Sc., - MATHEMATICS

PARTIAL DIFFERENTIAL EQUATIONS

Time: 3 Hrs

Max.Marks: 75

PART - A

CHOOSE THE CORRECT ANSWER

(10X1=10)

- 1. Eliminate the arbitrary constant a & b from z = (x+a)(y+b)
 - a) z=pq

b) z=p+q

- c) z = p-q
- d) Z = p/q

- 2. The general form of first order Linear equation is
 - a) $p_p \bar{Q}_q = \bar{R}$
- b) $p_{v}Q_{q}=R$
- c) $p_p + Q_q = R$ d) $p_p/Q_q = R$
- 3. Along every characteristic strip of the equation F(x,y,z,p,q) = 0 the function F(x,y,z,p,q) is
 - a) Zero

- b) constant
- c) one

- 4. The complete integral of the equation is pq =1
 - a) $a^2x y + az = c$ b) $a^2x y az = c$
- c) $a^2x + y az = c$ d) $a^2x + y az = c$
- 5. The One -dimensional diffusion equation is
 - a) $\frac{\partial^2 \emptyset}{\partial x} = \frac{1}{l_0} \frac{\partial \emptyset}{\partial x}$

- b) $\frac{\partial^2 \emptyset}{\partial x^2} = \frac{1}{\hbar} \frac{\partial \emptyset}{\partial t}$
- c) $\frac{\partial^2 \emptyset}{\partial x^2} = \frac{\partial \emptyset}{\partial t}$
- d) $\frac{\partial^2 \emptyset}{\partial x^2} = k \frac{\partial \emptyset}{\partial x}$

- 6. The general form of poissions equation is
 - a) $\nabla \emptyset = 0$

b) $\nabla^2 \emptyset = 0$

- c) $\nabla^2 \emptyset = 1$
- d) $\nabla^2 \emptyset = 2$

- 7. The Characteristic function Ø is positive then the equation is
 - a) Elliptic

- b) Parabolic
- c) Hyperbolic
- d) constant

- 8. The Hankel transform of $K(\xi, x)$ is
 - a) $xj_{v}(\xi x), v > \frac{1}{2}$ b) $xj_{v}(\xi x) > -\frac{1}{2}$ c) $xj_{v}(\xi x), v > -\frac{1}{2}$
- d) $j_{v}(\xi x), v > -\frac{1}{2}$

- 9. The families of equi potential surface is
 - a) f(x,y,z)=1

- b) f(x,y,z)=0
- c) f(x,y,z)=2
- d) f(x,y,z)=c

- 10. The interior Neumann problem is
 - a) $\frac{\partial \psi}{\partial x}$ Coincides
- b) $\frac{\partial \psi}{\partial \xi}$ coincides
- c) $\frac{\partial \theta}{\partial n}$ coincides d) $\frac{\partial \psi}{\partial n}$ coincides

PART-B

ANSWER ALL THE QUESTIONS

(5X7=35)

11. a) Find the general solution of the differential equation $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z$

b) Find the integral surface of the linear partial differential equation $x(y^2 + z)p - y(x^2 + z)q = (x^2 - y^2)z$ which contains the straight line (x + y) = 0. z = 1.

12. a) Find the solution of the equation $z = \frac{1}{2}(p^2 + q^2) + (p - x)(q - y)$ which passes through the x-axis.

(OR)

- b) Find the complete integral of the equation $p^2x + q^2y = z$
- 13. a) Find the solution of the equation $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = x y$

b) If $\alpha_r D + \beta_r D' + \gamma_r$ is a factor of F(D, D') and $\emptyset_r(\xi)$ is an arbitrary function of the single variable ξ then if $\alpha_r \neq 0$, $u_r = \exp\left(-\frac{\gamma_r x}{\alpha_r}\right) \emptyset_r (\beta_r x - \alpha_r y)$

14. a) Solve the equation $r + 4s + t + rt - s^2 = 2$

(OR)

- b) State and prove the Existence theorem in partial differential equation.
- 15. a) Derive the families of equi potential on the surfaces.

(OR)

b) A uniform circular wire of radius a charged with electricity of line density e surrounds grounded concentric spherical conductor of radius c. Determine the electrical charge density at any point on the conductor.

PART-C

ANSWER ANY THREE QUESTIONS

(3X10=30)

16. If $u_i(x_1, x_2, \dots, x_n, z) = c_i$ (i=1,2,...n) are independent solutions of the equations $\frac{dx_1}{p_1} = \frac{dx_2}{p_2} = \cdots = \frac{dx_n}{p_n} = \frac{dz}{R} \text{ then the relation } \emptyset(u_1, u_2, \dots, u_n) = 0 \text{ in which the function } \emptyset \text{ is arbitrary is a}$ general solution of the linear partial differential equation $p_1 \frac{\partial z}{\partial m} + p_2 \frac{\partial z}{\partial x_2} + \cdots + p_n \frac{\partial z}{\partial x_n} = R.$

- 17. A necessary and sufficient condition that a surface be an integral surface of a partial differential equation s that at each point its tangent element should touch the elementary cone of the equation.
- 18. If $\beta_r D' + \gamma_r$ is a factor of F(D,D') and $\emptyset_r(\xi)$ is an arbitrary function of the single variable ξ , then if $\beta_r \neq 0, u_r = \exp\left(-\frac{\gamma_r y}{\beta_r}\right) \emptyset_r(\beta_r x)$ is a solution of the equation F(D,D') = 0
- 19. Derive the solution of the equation: $\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{\partial^2 v}{\partial z^2} = 0$ for the region $r \ge 0$, satisfying the conditions:

 $V \to 0$ as $z \to \infty$ and as $r \to \infty$ V = f(x) on z = 0, $r \ge 0$

20. A rigid sphere of radius a is placed in a stream of fluid whose velocity in the undisturbed state is V. Determine the velocity of the fluid at any point of the disturbed stream.