SUB	.COI	DE:	20PI	MM2	C4
-----	------	-----	------	-----	----

	N	UL	 UD	٠. نا	201	TAT	VIZ	C4	
REG.NO:									

DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)

(For Candidates admitted from 2020-2021 onwards)

PG DEGREE EXAMINATIONS APRIL – 2021

		MI.SC - MAI	HEMA	TICS		
	TI' 2 YY	LINEAR A	LGEBF	RA		
	Time: 3 Hrs	PAR	Т _ А		Max.	Marks: 75
	OSE THE CORRECT ANS	WER				$(10 \times 1 = 10)$
1.	The system of equation AX	=0 where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	then			
	a) $ad - bc = 0$	b) $ad - bc \neq 0$	c) a	d + bc = 0	d) ad	$+bc \neq 0$
2.	An $n \times n$ matrix A is called	upper triangular				
	a) $A_{ij} = 0$	b) $A_{ji} = 0$	c) A	$_{ii}$ = 0	d) A	$_{i}=0$
3.	The space V* is denoted by				,	7-77
	a) L(V,V)	b) L(F,F)	c) L((V,F)	d) L[V	/.F1
4.	If A is an $n \times n$ matrix with	entries in the field F	then		, .	
	a) row rank ≠ column rank			w rank = column	ı rank	
	c) row rank + column rank =	2n d) None of the above				
5.	A polynomial f of degree n of	over a field has				
	a) n roots	b) exactly n roots		c) atleast n ro	ots	d) atmost n roots
6.	A linear combination of n-lin	near functions is				. 1 - 5 - 5
	a) n linear	b) (n-1) linear		c) (n+1) linear	r	d) linear
7.	An $n \times n$ matrix A over a fie	ld F is skew symmet	ric if			Appen a
	a) $A = A'$	b) $A \equiv A'$		c) $-A = A^t$		d) $A = (A^t)^t$
8.	If $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ then the char	racteristic polynomia	ıl is			<i>a) n</i> = (<i>n</i>)
	a) $x^2 - 1$	b) $x^3 - 1$		c) $x^2 + 1$		d) $x^3 + 1$
9.	If E is a projection on R alon	g N then (I-E) is				4) 3/ 11
	a) projection on N along R		b) pro	ojection on N alc	ng E	
	c) projection on R along E		d) is	not a projection		
10	. If T is a linear operator on ar	arbitrary vector spa	ce and if	there is a monic	polyno	omial P such that
	a) P(T)=1	b) P(T)=0		c) P(T)=-1		d) P(T)=0,1

ANSWER ALL THE OUESTIONS

 $(5 \times 7 = 35)$

11. a) If A,B,C are matrices over the field F such that the products BC and A(BC) are defined prove that the products AB, (AB)C are also defined and A(BC) = (AB)C.

(OR)

- b) If W is a subspace of a finite dimensional vector space V show that every linearly independent of W is finite and is part of a basis for W.
- 12. a) Let F be a field and T be a linear operator on F^2 defined by $T(x_1, x_2) = (x_1 + x_2, x_1)$ prove that T is non-singular.

(OR)

- b) If W_1 and W_2 are subspaces of a finite dimensional vector space show that $W_1 = W_2$ if and only if $W_1^0 = W_2^0$.
- 13. a) State and prove Lagranges interpolation formula.

(OR)

- b) Let K be a commutative ring with identity and let n be a positive integer prove that there exists at least one determinant function on $K^{n\times n}$.
- 14. a) Let K be a commutative ring with identity, A and B be $n \times n$ matrices over K prove that $\det(AB) = (\det A)(\det B)$.

(OR)

- b) Define Characteristic value, Characteristic vector, Characteristic space, Characteristic value of A in F, Characteristic polynomial.
- 15. a) Show that the range of T and the null space of T is invariant under T.

(OR)

b) Let F be a commuting family of diagonalizable linear operators on the finite dimensional vector space V prove that there exists an ordered basis for V such that every operator in F represented in that basis by a diagonal matrix.

PART - C

ANSWER ANY THREE QUESTIONS

 $(3 \times 10 = 30)$

- 16. If W_1 and W_2 are finite dimensional subspaces of a vector space V prove that $W_1 + W_2$ is finite dimensional and dim W_1 +dim W_2 = dim $(W_1 \cap W_2)$ + dim $(W_1 + W_2)$.
- 17. Let V be a n-dimensional vector space over the field F and W be m-dimensional vector space over the field F show that the space L(V,W) is finite dimensional with dimension mn.
- 18. Let D be an n-linear function on $n \times n$ matrix over K. Suppose D has the property that D(A)=0 whenever two adjacent rows of A are equal prove that D is alternating.
- 19. State and prove Cayley Hamilton theorem.
- 20. State and prove primary decomposition theorem.