	SUB.CODE: 20PMM2C5									
REG.NO:						ä				

Max.Marks: 75

Time: 3 Hrs

DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)

(For Candidates admitted from 2019-2020 onwards)

PG DEGREE EXAMINATIONS APRIL - 2021

M.Sc., - MATHEMATICS

COMPLEX ANALYSIS

PART - A									
CH	OOSE THE CORRECT	T ANSWER		(10X1=10)					
1.	. The Intersection of a finite number of open sets is								
	a) Closed	b) open	c) set	d) bounded					
2.	A metric space is said to	I to be complete if every Cauchy sequence is							
	a) Closed	b) not convergent	c) convergent	d) open					
3.	$\int_{ z =1} e^z \cdot z^{-n} dz =$								
	a) $\frac{1}{n!}$	$b) \frac{1}{(n-1)!}$	c) $\frac{2\pi i}{(n-1)!}$	(d) 0					
4.	If $f z $ is a polynomial a	nd c denotes the circle $ z - a $	$= R$, $\int_{e} p(z)dz$						
	a) 0	b) 2 <i>πi</i>	c) $-2\pi i R^2$	d) $-2\pi i R^2 P^{1(a)}$					
5.	The order of the pole Z	$= 0 \text{ for } \frac{1-\sin z}{z^5} \text{ is}$							
	a) 1	b) 2	(c) 4	d) 5					
6.	The function e^z is essen	on e^z is essential singularity at							
	a) 1	b) 0	c) −∞	d) ∞					
7.	The value of $\int_0^{\frac{\pi}{2}} \log \sin x$	x dx =							
	a) $-\frac{\pi}{2}\log 2$	b) πlog 2	(c) $-\pi \log 2$	d) none of these					
8.	The residue of $f(2) = \frac{1}{(2)}$	$\frac{z}{z^2-1)^2} =$							
	a) 0	b) -1	c) 1	d) $-\frac{1}{2}$					
9.	A non-constant	- function has neither a maxim	num nor a minimum in	its Region of definition					
	a) Laplace	b) Analytic	c) entire	d) potential					
10	. The harmonic conjugate	of $e^{x \cos y}$ is							
	a) $e^{x \cos y} + c$	b) $e^{x \sin y} + c$	$c)e^x + c$	d) none of these					

 $c)e^x + c$

b) $e^{x \sin y} + c$

d) none of these

(5X7=35)

11. a) Prove that a set is compact if and only if it is complete and totally bounded.

(OR)

- b) Prove that on a compact set every continuous function is uniformly continuous.
- 12. a) State and prove Cauchy integral formula.

(OR)

- b) If f (z) is analytic in an open disk D, then $\int_r f(z) dz = 0$ for every closed Curve δ in D.
- 13. a) A non-constant analytic function maps open sets onto open.

(OR)

- b) Expand $f(z) = \frac{z-1}{z+1}$ is a Taylor's series
 - i. About the point z = 0
 - ii. About the point z = 1. Determine the region of conversant in each case.
- 14. a)State and Prove Argument theorem.

(OR)

- b) Evaluate $\int_0^{2\pi} \frac{d\theta}{5+4\sin\theta}$
- 15. a) State and Prove Schwarz's theorem.

(OR)

b) Prove that the sum of two harmonic functions is also harmonic.

PART-C

ANSWER ANY THREE QUESTIONS

(3X10=30)

- 16. A non-empty open set in the plane is connected if and only if any two of its points can be jointed by a polygon which lies in the set.
- 17. State and Prove Cauchy's theorem for a Rectangle.
- 18. State and Prove Taylor's theorem.
- 19. If f (z) is analytic in a region n, then $n(r,a)f(a) = \frac{1}{2\pi i} \int_{\delta} \frac{f(z)}{z-a} dz$ for every cycle δ which is homologous to zero in n.
- 20. If f(z) is an analytic function in the annulus (or) Ring between the concentric Circles c and c' with center a and radius R and R' then $f(z) = \sum_{n=-\infty}^{\infty} A_n (z-a)^n$ Where z is any point in the ring.