SUR	COL	DE: 201	PMM2	C
SUD	\mathbf{U}	JE: ZUI		

REG.NO:

1 -2-7		16		

DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)

(For Candidates admitted from 2020-2021 onwards)

PG DEGREE EXAMINATIONS APRIL - 2021

M.Sc., - MATHEMATICS

MEASURE THEORY AND INTEGRATION

Time: 3 Hrs				Max.Marks: 7	75
		PART -	A		
CHOOSE THE CORR	ECT ANSWER		(1	0X1=10)	
1. Every non empty ope	en set has	Measu	re.		
a) Borel	b) negative	c) Let	pesque	d) positive	
2. If $P^* = [0,1] - P$, P	$=\bigcup_{n=1}^{\infty}P_n$, then	$M(P^*) = \sum_{n=1}^{\infty}$	$\frac{2^{n-1}}{3^n} = $		
a) ∞	b) 3 ⁻¹	c) 1	d) 0		
3. Let $\{f_n, n = 1, 2,$	} be a	sequence of	non - negative	measurable fu	inctions then
$\lim\inf\int f_ndx\underline{\hspace{1cm}}$	lim	$\inf \int f_n dx$.			
a) ≤	b) ≥	c) =	d) ≠		
4. The value of $\int_1^\infty \frac{dx}{x} =$					
a) ∞ b)	$\log x$	c) 1	d) 0		
5. Let A, B be subsets of	of a set C, let A, E	$B, C \in \mathbb{R}$ and let	$\mu(A \cap B) = \underline{\hspace{1cm}}$		
a) $\mu(A)$	b) $\mu(A) \cdot \mu(A)$	B)	c) $\mu(c)$	d) $\mu(B)$	
6. Let f be a Measurab	le function and le	t A = [x: f(x)]	≥ 0], then for $c > 0$	$0, \mu[x:f(x)>c]_{-}$	
a) $c \int f d\mu$	b) $-c\int fd\mu$	c) c^{-1}	$\int_{A} f d\mu$	d) $\int_A f d\mu$	
7. If $\varphi(E) = \int_E f d\mu$, w	here $\int f d\mu$ is def	ined, then $arphi$ is a	ı M	easure.	
a) Jordan decompo	osition	b) Signed	c) Haln d	ecomposition	c) Borel
8. A sequence $\{f_n\}$ is fu					
a) 0 b)	∞ c) 1	d) no	ne		
9. If $f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$	$(x,y) \neq (0,0) t$	$hen \int_0^1 dx \int_0^1 f(x) dx = \int_0^1 f(x) dx$	$(x,y)dy = \underline{\hspace{1cm}}$	<u> </u>	
a) $-\frac{\pi}{4}$					
10. If $\{A_i\}_y$ is a monoto	one Sequence of s	sets, then $\lim A_i^y$	=	i i	
a) $\lim (A_i)_y$	b) (l	$\operatorname{im} A_i)_y$	c) $(\lim A_i)^y$	d) lim A_{ν}^{i}	

ANSWER ALL THE QUESTIONS

(5X7=35)

11. a) Show that the every interval is Measurable.

(OR)

- b) Show that not every Measurable set is a Borel set.
- 12. a) State and prove the Lebesgue's Monotone Convergence theorem.

(OR)

- b) State and prove the Lebesgue's dominated Convergence theorem.
- 13. a) If μ is a σ finite Measure on a ring \mathbb{R} , Prove that it has a unique extension to σ ring $S(\mathbb{R})$.

(OR)

b) Let $\{f_n\}$ be a sequence of Measurable function, $f_n: X \to [0, \infty]$; Prove that $\int \sum_{n=1}^{\infty} f_n \ d\mu = \sum_{n=1}^{\infty} \int f_n \ d\mu$ 14. a) Let $f_n \to f$ a.e, if

 $(i)\mu(x)<\infty,$ (ii) for each n, $|f_n|\leq g$, an integrable function, Prove that $f_n\to f$ a. u. (OR)

- b) Let V be a signed measure on [X,S], Prove that there exists a positive set A and a negative set B, such that $A \cup B = X$, $A \cap B = \emptyset$, and the pair A,B is said to be a Hahn decomposition of X with respect to V. It is unique to the extent that if A_1 , B_1 , and A_2 , B_2 are Hahn decompositions of X with respect to V. Prove that $A_1 \Delta A_2$ is a V-null set.
- 15. a) Let $[X, S, \mu]$ and $[Y, \mathfrak{F}, V]$, $\varphi(x) = v(V_x)$, $\psi(y) = \mu(V^y)$, for each $x \in X, y \in Y$. Prove that φ is S-Measurable, ψ is \mathfrak{F} -Measurable and $\int_X \varphi \ d\mu = \int_V \psi \ dv$.

(OR)

b) If $E \in S \times \mathcal{F}$, Prove that for each $x \in X$ and $y \in Y$, $E_x \in \mathcal{F}$ and $E^y \in S$.

PART-C

ANSWER ANY THREE QUESTIONS

(3X10=30)

- 16. Let C be any real number and let f and g be real-valued Measurable functions defined on the same Measurable set E. Prove that f + c, cf, f + g, f g and fg are also Measurable.
- 17. (i) If f is Riemann integrable and bounded over the finte interval [a,b], prove that f is integrable and $R \int_a^b f \, dx = \int_a^b f \, dx$.
 - (ii) Show that $\int_0^1 \frac{x^{\frac{1}{3}}}{1-x} \log 1/x \ dx = 9 \sum_{n=1}^{\infty} \frac{1}{(3n-1)^2}$.
- 18. If f_i is Measurable, $i = 1, 2, \dots, prove$ that
 - (i) $\sup_{1 \le i \le n} f_i$ is Measurable.

(ii) $\inf f_n$ is Measurable.

(iii) $\lim \inf f_n$ is Measurable.

- (iv) lim sup f_n is Measurable.
- 19. Let V be a signed Measure on [X, S], Prove that there exists Measures V^+ and V^- on [X, S] such that $V = V^+ V^-$ and $V^+ \perp V^-$. The Measures V^+ and V^- are uniquely defined by v, and $V = V^+ V^-$ is said to be the Jordan decomposition of V.
- 20. State and prove Fubini's theorem.