ST	JB.	CC	n	E:	20	PP	H2	C
~								

REG.NO:					

DHANALAKSHMI SRINIVASAN COLLEGE OF ARTS & SCIENCE FOR WOMEN (AUTONOMOUS)

(For Candidates admitted from 2020-2021onwards)

PG DEGREE EXAMINATIONS APRIL – 2021									
M.SC - PHYSICS									
QUANTUM MECHANICS									
Time: 3 Hrs	Max.Marks: 75								
	PART – A								
HOOSE THE CORRECT ANSWER			(10×1=10)						
1. For the Schrodinger equation for a free	particle in the equa	tion							
a) V=0 b) V≠0	c) V<0	d) None of t	hese						
2. The expectation value of any quantity f(r) which depends upon position, for normalized function may be									
written as									
a) $\langle f(r) \rangle = \int \Psi^*(t) \Psi(t) d\tau$	b)	$\langle f(r) \rangle = \int \Psi(r,t) f(r) \Psi^*$	$(r,t) d\tau$						
c) $< f(r) > = \int \Psi^* (r,t) f(r) \Psi (r,t) d\tau$									
3. In case of a potential step, the potential function under goes only									
a) Continuous change	b)	One discontinuous change							
c) Continuous and discontinuous ch	ange d)	None of these							
4. The particle's penetration of potential b	parrier is called								
a) Transmission co-efficient	b) Tunnel effect	c) Reflected wave	d) Transmitted wave						
5. The splitting of energy level due to an e	external electric fiel	d along the Z direction is							
a) Zeemaneffect b) Degenerate levels									
c) Stark effect d) Non-degenerate levels									
6. The Hamiltonian of theoscillator is $H = H_0 + \lambda H^1$									
a) Perturbed b) Unperturbe	ed c)	Harmonic	d) Anharmonic						
7. If ρ is the number of me particles per unit volume in the incident beam and v is the velocity of the incident									
particles, then									
a) ρ = v J b) J= ρ v	c) ₁	o= J v	d) None of these						
8. Green's function is a solution of theproblem for a source of unit strength at the point r'.									
a) Scattering b) Reflection		Refraction	d) Transmission						

a) +1	b) 0	c) ±1	d) -1
10. Energy gap is	between the positive and r		u) -1
a) moc ²	b) 2mo ² c	c) 2moc	d) 2moc ²
	and the second	PART - B	d) Zilloc
ANSWER ALL THE QU	UESTIONS		(5×7=35)
11. a) Write a short note	on Hilbert space.		(3.17-33)
(OI	R)		
b) Obtain equation of	f motion in the Heisenberg's	picture.	
12. a) Obtain and solve t	he radial equation of hydrog	en atom.	
(OI	(\$)		
b) Write down Schroo	dinger wave equation for a p	article in a box.	
13. a) Discuss the effect	of perturbation over a non- o	legenerate state.	
(OF			
b) Estimate the ground	d state energy of helium ator	n using variation principle.	
14. a) Show that $[L_x, L_y]$	$ =i h L_z $	and the Highlandister.	
(OR			
b) Give the theory of l	Born approximation in scatte	ering calculation.	
15. a) Derive the K.G equ	uation for relativistic wave e	quation for a free particle.	
(OR			
b) Obtain Dirac matric	ces.		
		PART - C	
NSWER ANY THREE			(3×10=30)
16. Solve the Schrodinge	r equation for a linear harmo	onic oscillation and find the ener	gy eigen values and
eigen functions.			
17. Obtain the analysis of	rotational energy of diatom	ic molecules.	
Obtain the time indep unperturbed Hamilton	endent perturbation equation in degenerate case.	n and also give the eigen states a	and eigen values of the
		g process. Calculate the differen	tial cross section for
scattering of an elect	ron by screened coulomb po	tential.	da oloss-section for
		of a Dirac equation for a free p	article
		i men tet a nee p	ur 11010.

9. Eigen values of the Dirac matrices must be